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We study structure of the gapless points �diabolical points� at zero magnetic field �Hz=0� of single-spin
models with spin anisotropies. Nontrivial appearance of diabolical points at finite transverse field Hx has been
studied from the viewpoint of interference of the Berry phase and related phenomena have been experimentally
found in the single molecular magnet Fe8. We study effects of the orthorhombic single-ion anisotropy
E�S+

2 +S−
2� and find a symmetry associated with the degeneracy, which provides a clear picture of the global

structure of energy-level diagram including the excited states. Moreover, we study effects of the higher-order
anisotropy C�S+

4 +S−
4� and find that, in contrast to the semiclassical limit �S→��, location of a pair annihilation

of the diabolical point does not coincide with a point at which a pair of diabolical points appears in nonzero Hy

space �bifurcation points�. Distance between the annihilation and bifurcation points vanishes when S→�,
which restores the semiclassical result. We obtain a complete structure of the diabolical points in the �C ,Hx�
plane.

DOI: 10.1103/PhysRevB.78.214434 PACS number�s�: 75.10.Jm, 75.45.�j, 75.75.�a, 75.30.Gw

I. INTRODUCTION

Single molecular magnets, e.g., Mn12, Fe8, and V15, are
interesting objects from both theoretical and experimental
points of view in physics and chemistry.1–5 Because those
molecules consist of small number of magnetic atoms, the
energy levels are discrete. There, we observe characteristics
due to quantum-mechanical motion of the wave function. In
particular, in the high-spin molecular magnets with an easy-
axis anisotropy, such as Mn12 and Fe8, a steplike magnetiza-
tion process where Mz suddenly changes has been observed
in a sweep of the magnetic field. This phenomenon is under-
stood to be attributed to the quantum tunneling between two
values of Mz and is called resonant tunneling.6–11 The
energy-level diagram as a function of the magnetic field Hz
consists of linear lines denoting the Zeeman energy �diabatic
state�. At the crossing point of the energy levels, however,
they form an avoided level-crossing structure due to some
quantum mixing interactions which cause nonzero matrix el-
ement between the crossing states. When the field crosses
these points, the state undergoes adiabatic and nonadiabatic
transitions. This quantum-mechanical aspect of magnetiza-
tion process has been studied from the viewpoint of Landau-
Zener-Stueckelberg mechanism.12–15 There, the energy gap
and sweeping velocity determine properties of the transition.
By making use of this formula, determinations of the energy
gaps have been performed.16–18 Besides the high-spin mol-
ecules, there have been found also various types of magne-
tization processes which reflect the quantum-mechanical as-
pects of specific energy-level diagram of the systems.19–23

These systems have attracted attentions also from viewpoints
of possible applications, for example, a basic component of a
quantum computer.24

The energy gap is understood as a tunnel splitting of the
energy levels. That is, by tunneling between classically de-
generate minima of a potential, the degeneracy is broken.
The idea of quantum tunneling of magnetization was pro-

posed by Bean and Livington25 and the first theoretical de-
scription was given by Chudnovsky.26 This tunneling phe-
nomenon can be characterized by the instanton solution in
the semiclassical treatments.27–29 Thus, usually the ground
state in finite quantum systems is unique.

However, in some situation, a degeneracy can exist as
predicted by Bogachek and Krive.30 The point at which the
energy gap vanishes is called a “diabolical point.”31 It was
pointed out that an interference of Berry phase32 plays an
important role in small magnetic particles.33–35 Garg36 stud-
ied this phenomenon by studying destructive interference of
the Berry phase by using the spin coherent-state path-integral
formulation. He showed that the tunnel splitting at Hz=0 is
quenched in a single-spin system of a large spin S with bi-
axial anisotropy of the terms �−DSz

2+E�S+
2 +S−

2�� under non-
zero transverse fields Hx �Refs. 36 and 37� even when Kram-
ers’ theorem is inapplicable. There, the tunnel splitting is
found to oscillate as a function of the transverse field. That
is, energy gaps vanish at some values of the transverse field
Hx. Villain and Fort38 studied a case of large spin in a weak
external field limit. They rederived Garg’s result and ex-
tended the study in the �Hx ,Hz� plane. Keçecioğlu and
Garg39 obtained exact locations of diabolical points algebra-
ically in a model Hamiltonian.

Werensdorfer and Sessoli18 experimentally observed the
oscillating behavior of tunnel splitting in the molecular mag-
net �Fe8O2�OH�12�tacn�6�8+ �called Fe8�. This spin system
consists of eight Fe atoms, each of which has S=5 /2 con-
forming a ferrimagnetic structure. The ground state of this
molecule has the total spin S=10.40 This material is well
described by a single large spin model. They measured tun-
nel splitting of this material using the Landau-Zener-
Stueckelberg theory. There, it is found that the number of
diabolical points is smaller than that expected from S, which
is called “the missing paradox.”

Effects of the higher-order anisotropy C�S+
4 +S−

4� are also
studied. Keçecioğlu and Garg explained the missing paradox
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as an effect of the higher-order anisotropy.41,42 Bruno43

pointed out a pair annihilation of diabolical points in the
�C ,Hx� plane and they move to the nonzero Hy space. They
discussed the case with the large S limit using spin coherent-
state path-integral formulation.

In the present paper, we point out that the mechanism of
degeneracy at finite values of Hx can be understood from a
view of a kind of parity effect in the eigenvalues of Sx which
is directly obtained from the symmetry of the Hamiltonian of
the system. This symmetry argument provides a clear picture
of the global structure of energy-level diagram including the
excited states.

Moreover, we study the effects of the higher-order aniso-
tropy C�S+

4 +S−
4� on positions of diabolical points in the

�C ,Hx� plane and determine a complete structure of diaboli-
cal points in the plane. There, we find three types of pair
annihilation of the diabolical points and also find out to
where the diabolical points move from the plane. It should be
noted that in the case of finite S, the pair annihilation point at
finite Hx does not coincide with the point where a pair of
diabolical points appears in nonzero Hy space �bifurcation
point� in contrast to the semiclassical case �S→��.43 We find
that the distance between the annihilation and bifurcation
points vanishes when S→�, Namely, the semiclassical result
is restored in this limit. We also study a difference in the
structure of diabolical points for odd and even values of S,
which should be related to the parity effect pointed in the
literature.6

This paper is organized as follows. In Sec. II, we intro-
duce a single-spin model of single molecular magnets. In
Sec. III, we study symmetry of the Hamiltonian of the
single-spin model in relation to the nontrivial degeneracy. In
Sec. IV, we discuss the effects of the higher-order anisotropy.
Finally, in Sec. V, we summarize the present results.

II. MODEL

In this paper, we study structures of energy-level diagram
of a large spin model described by

H = − DSz
2 + E�S+

2 + S−
2� + C�S+

4 + S−
4� − H · S , �1�

where S is a spin operator with three components �Sx ,Sy ,Sz�,
and H is an external magnetic field �Hx ,Hy ,Hz�. The terms
of D, E, and C represent the single-ion anisotropies. When
D and E��D� are positive, the easiest axis is the z axis
�−DSz

2� and the hardest axis is the x axis �2ESx
2�. This large

spin model is used to study properties of single molecular
magnets such as Mn12 and Fe8. For these molecules, the total
spin S of the ground state can be regarded to be S=10.40,44

In particular, we study effects of the system parameters on
the energy levels and discuss the behavior of the diabolical
points, at which the ground state is degenerate at Hz=0 as
mentioned in Sec. I. Throughout the paper, we take D as a
unit of energy �D=1�.

III. SYMMETRY OF THE MODEL WITH BIAXIAL
ANISOTROPY UNDER AN EXTERNAL FIELD Hx

A. Special symmetric point

As mentioned in Sec. I, the problem of the diabolical
point has been studied extensively for the model �1�. There,

the ground-state degeneracy at Hz=0 is studied as a function
of Hx and found that the energy gap disappears at certain
values of Hx. Generally, disappearance of the gap is associ-
ated with existence of a kind of symmetry. So far, the sym-
metry of the model has been discussed in the path-integral
formulation, where the gap disappearance is attributed to a
destructive interference of the Berry phase.

In this section, we study the symmetry of the model �1�
with C=0 and the magnetic field along x axis,

H = − DSz
2 + E�S+

2 + S−
2� − HxSx, �2�

from a viewpoint of explicit form of the Hamiltonian con-
sisting of spin operators.

Because we consider the case that the principal anisotropy
axis is along the z axis, naively, we consider that the exis-
tence of Hx destroys the symmetry of the Hamiltonian. How-
ever, it should be noted that at a certain combination of D
and E, i.e.,

E = 0.5D , �3�

the Hamiltonian can be expressed as follows:

H0 = − DSz
2 + D�Sx

2 − Sy
2� − HxSx = 2DSx

2 − HxSx − DS�S + 1� .

�4�

This Hamiltonian only consists of Sx and thus it is commu-
tative with Sx. Therefore, this Hamiltonian can be diagonal-
ized simultaneously with Sx, where the eigenstates are

Sx�Mx� = Mx�Mx�, Mx = − S,− S + 1, . . . ,S . �5�

In this system, the energy levels are linear as a function of Hx
and cross each other without gap. Because D is positive, at
Hx=0 the ground state is a state of Mx=0, i.e., �Mx=0�; for
S=10, the ground-state energy is −110D. The first-excited
state is degenerate and they have Mx= �1. When we in-
crease Hx, the ground state is replaced by a state with a larger
magnetization Mx+1 sequentially. That is, at Hx=2, the en-
ergy level of state �Mx=1� crosses with that of �Mx=0�, then
�Mx=1� becomes the ground state. Similarly, the ground-
state magnetization changes to Mx=2,3 , . . . at Hx=6,10, . . .,
respectively. In Fig. 1, we depict the energy diagram of the
model of Eq. �2� as a function of the field Hx. In Fig. 2, we
plot the energy gap between the ground-state energy �EG�
and the first-excited energy �E1�,
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FIG. 1. Energy diagram of the low-lying levels of the system �1�
with S=10 as a function of the field Hx for E=0.5.

KEIGO HIJII AND SEIJI MIYASHITA PHYSICAL REVIEW B 78, 214434 �2008�

214434-2



�E = E1 − EG, �6�

by dashed lines as a function of Hx. There, we see a saw-
tooth shape as shown.

B. General biaxial anisotropy

Next, we consider the case with E�0.5D. We set

E = 0.5D + � . �7�

The Hamiltonian becomes

H = H0 + H�, �8�

with

H� = ��S+
2 + S−

2� = 2��Sx
2 − Sy

2� . �9�

Here, the states �Mx� are no more the eigenstates of the
Hamiltonian H. The effects of the term Sy

2 are expressed in
terms of the raising �Sx

+� and lowering �Sx
−� operators of for

Mx as

Sy
2 = �1

2
�Sx

+ + Sx
−��2

=
1

4
�Sx

+2 + Sx
+Sx

− + Sx
−Sx

+ + Sx
−2� . �10�

This term causes the change of Mx by 2. The explicit matrix
element of this operator is 	Mx=m�Sy

2�Mx=n�,

=
1

4
�S�S + 1� − n�n + 1��1/2�S�S + 1�

− �n + 1��n + 2��1/2�m,n+2

+
1

4
�2S�S + 1� − 2n2��m,n

+
1

4
�S�S + 1� − n�n − 1��1/2�S�S + 1�

− �n − 1��n − 2��1/2�m,n−2. �11�

This term mixes the eigenstates �Mx=m� and �Mx=n� when

�m − n� = 2, �12�

and thus it opens a gap in the crossing points with even
values of �m−n� in the energy diagram in Fig. 1. In contrast,

it does not open a gap between �Mx=m� and �Mx=m�1�
because

	Mx = m�Sy
2�Mx = m � 1� = 0, �13�

and

	Mx = m�Sy
2�Mx = n�	Mx = n�Sy

2�Mx = m � 1� = 0 �14�

for all the possible integer values of n.
Therefore, when the difference of the magnetization Mx

between the ground state and the first-excited state is one, the
cross points in Fig. 1 remain gapless points ��E=0�. On the
other hand, those of the difference two change to avoided
level crossings. By this effect of Sy

2, the energy diagram has
a ribbonlike shape as depicted in Fig. 3, and the Hx depen-
dence of the gap is smoothed as depicted in Fig. 2 by a solid
curve. It should be noted that the value of E /D is 0.082 for
Fe8 and is much smaller for Mn12. Here we used a large
value of E /D just because of the convenience for drawing
the figure. If we use a small value of E /D, the energy differ-
ence is too small to see. The physical mechanism is the same
irrespective of the value and here we use a large value. If we
decrease the value of E down to E=0.3, the ground state and
the first-excited state almost degenerate as depicted in Fig. 4.
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FIG. 2. Energy gap between the lowest energy and the first-
excited energy of the system �2� with S=10 as a function of the
transverse field Hx. The solid line is the case of E=0.485; the
dashed line is the case of E=0.5.
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FIG. 3. A ribbonlike structure of energy diagram of the low-
lying levels of the system �2� with S=10 and E=0.485 as functions
of the field Hx.
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FIG. 4. Energy diagram of the low-lying levels of the system �2�
with S=10 and E=0.3 as functions of the field Hx. The lowest
energy and the first-excited energy almost degenerate in this vertical
axis scale. The second-excited energy and the third-excited energy
are also almost degenerate.
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There, the energy gap �E has a shape which has often ap-
peared in literature �Fig. 5�.

IV. EFFECTS OF A HIGHER-ORDER ANISOTROPY

In single molecular magnets with large spins, e.g., Mn12
�Refs. 45–47� and Fe8,18 the existence of the higher-order
anisotropic term,

H� = C�S+
4 + S−

4� �15�

has been suggested. In this section, we study effects of this
fourth-order anisotropy. The Hamiltonian without the mag-
netic field is

H = − DSz
2 + E�S+

2 + S−
2� + H�. �16�

Here it should be noted as follows. Because S+=Sx+ iSy and
S−=Sx− iSy, and

S+
4 + S−

4 = 2Sx
4 + 2Sy

4 − 6Sx
2Sy

2 − 6Sy
2Sx

2 − 4i�SxSzSy − SySzSx�

− 2Sz
2. �17�

Thus, in the representation which diagonalize Mx, i.e.,

�Mx��, it is given by

S+
4 + S−

4 = 2Sx
4 +

1

8
�Sx

+ + Sx
−�4 −

3

2
Sx

2�Sx
+ + Sx

−�2 −
3

2
�Sx

+ + Sx
−�2Sx

2

+ Sx�Sx
+ − Sx

−��Sx
+ + Sx

−� − �Sx
+ + Sx

−��Sx
+ − Sx

−�Sx

+
1

2
�Sx

+ − Sx
−�2, �18�

which can change the value of Mx by multiples of 2.
Therefore, nonzero components of matrix elements of the

fourth term are

	Mx = m�H��Mx = m� ,

	Mx = m�H��Mx = m � 2� , �19�

and

	Mx = m�H��Mx = m � 4� .

Because

	Mx = m�H��Mx = m � 1� = 0, �20�

the fact that the gap opens only at crossing points where the
magnetization Mx differs by two maintains.

0

10

20

30

40

50

H
x

−1 X10−3 −5 X10−4 0 5 X10−4 1 X10−3

C

FIG. 6. Diabolical points between the lowest-energy level and
the first-excited energy level on the �C ,Hx� plane for the E=0.5.
The symbol ��� denotes the type I annihilation points. The symbol
��� denotes the type II annihilation points.

23.05
23.1

23.15
23.2

23.25
23.3

23.35

Hx

-0.0001054
-0.0001052

-0.000105
-0.0001048

-0.0001046
-0.0001044

-0.0001042C

0
0.01
0.02
0.03
0.04
0.05
0.06

Hy

FIG. 7. The branch of diabolical points between the lowest en-
ergy and first-excited energy with largest Hx in the case of S=10
and E=0.3. The symbol ��� denotes the bifurcation point. The sym-
bol ��� denotes the annihilation point.
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FIG. 5. �a� Energy gap between the lowest energy and the first-excited energy for E=0.3 as a function of the field Hx. There are ten
diabolical points. �b� Energy gap between the second-excited energy and the third-excited energy for E=0.3. In this case, there are nine
diabolical points.
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A. Dependence on C at fixed E

First let us study the behavior of the diabolical points on
C at fixed value of E. We plot the change in the diabolical
points in a coordinate �C ,Hx� in Fig. 6. As far as �C� is small,
the number of diabolical points is the same as that of C=0.
However, for large �C� cases, pairs of diabolical points dis-
appear from the figure. We call this point �C ,Hx� “type I
annihilation point” which is shown by ��� in Fig. 6. The pair
annihilation occurs from the side of large Hx when C de-
creases in the negative C region. In the positive side, diaboli-
cal points are drawn into the Hx axis sequentially. At the Hx
axis, the diabolical point combines with that from the nega-
tive Hx side and disappears, which we call “type II annihila-
tion points,” and denote it by ��� in Fig. 6. At these annihi-
lation points, the diabolical points move to a nonzero Hy
region.

First, we show the motion of diabolical points around the
type I annihilation point. In Fig. 7, we plot the motion of
diabolical points in the largest Hx values in a Hx�0 sub-
space. There, we find that a pair of diabolical points is cre-
ated in nonzero Hy region at a point. We denote this point by
the symbol ���. We call this point “a bifurcation point.”
Here, it should be noted that the point of the creation of the
pair is not the point of the annihilation of the pair on the
�C ,Hx� plane. We find that this separation of the annihilation
point and the bifurcation point exists in all the finite values

of S. In Fig. 8, we show the case of S=2, where we find the
same type of structure. The separation is much larger than
the case of S=10.

The effect of the fourth-order anisotropy has been dis-
cussed by Bruno.43 His argument is the following. There is a
critical value of C=Cc where two diabolical points collide
and at this point the bifurcation takes place. That is, a pair of
two diabolical points appears at the type I annihilation point.
However, we find that the bifurcation point is different from
the annihilation point and appears at a larger value �smaller
�C�� of C. This means that the number of diabolical points is
not preserved on the �Hx ,Hy� plane when we change C. This
fact is different from Bruno’s argument. In his arguments, the
number of diabolical points on the �Hx ,Hy� plane is pre-
served except at Cc. On the other hand, our numerical result
shows that the number of diabolical points on the �Hx ,Hy�
plane can change with the value of C. Bruno’s discussion is
based on the large S limit. Thus, we study S dependence of
the separation of the annihilation and bifurcation points.

Here, we investigate structure of the diabolical points near
annihilation points. In Fig. 6, a pair of diabolical points near
annihilation points has a parabolalike structure on the �C ,Hx�
plane. Thus, we try to fit the curve using a rotated parabola
function �a2C2+2abHxC+b2Hx

2+cC+dHx+e=0� with con-
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FIG. 8. The branch of diabolical points between the lowest en-
ergy and first-excited energy with largest Hx in the case of S=2 and
E=0.3. The symbol ��� denotes the bifurcation point. The symbol
��� denotes the annihilation point.

22

23

24

25

H
x

−1.1 X10−4 −1 X10−4 −9 X10−5 −8 X10−5

C

FIG. 9. Fitting of diabolical points using a rotated parabola
function. The symbols �+� denote the bare numerical results for the
diabolical points. The symbol ��� denotes the bifurcation point.
The symbol ��� denotes the annihilation point. The symbols ���
denote points on a rotated parabola obtained by fitting, and the
symbol ��� denotes the origin of the fitted parabola. �Because the
scales of axes of Hx and C are different, the point denoted by the
circle does not look like the origin.�
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FIG. 10. �a� �Hx as a function of 1 /S with E=0.3. �b� �C as a function of 1 /S with E=0.3.
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stants �a ,b ,c ,d ,e�. The fitting is given in Fig. 9. The origin
of this rotated parabola where the diabolical point is located
at �C ,Hx���−0.000 095,22.834 68�, which is indicated ���.
The point is not the annihilation point and it is not the bifur-
cation point neither. This fact indicates that the bifurcation
does not occur at the origin of the parabola which is a special
point of this figure.

Now, we study S dependence of the distance between the
bifurcation point and the annihilation point. We define two
quantities,

�C 
 Cbif − Cann, �21�

and

�Hx 
 Hbif
x − Hann

x , �22�

where Cbif and Hbif
x are values of bifurcation points, and Cann

and Hann
x are values of annihilation points.

We plot �C and �Hx as functions of 1 /S in Fig. 10. In
these figures, we find that both �C and �Hx rapidly de-
crease, when we increase S. Thus, our numerical results are
consistent with Bruno’s arguments in the large S limit. But, it
should be noted that at finite values of S the bifurcation point
and the annihilation point do not coincide, which indicates
that there exists a nontrivial quantum effect.

Next, we show the motion of the diabolical points around
the type II annihilation points. There, two diabolical points
move from �C ,Hx ,Hy =0� to �C ,Hx ,Hy �0�. In Fig. 11, we
show this motion of diabolical points in the �C ,Hx ,Hy�
space.

As we saw above, the diabolical points disappear from the
�C ,Hx� plane by the pair annihilation. In the case that S is an
odd integer, there is an odd number of diabolical points in
the Hx��0� region of the �C ,Hx� plane. There, the last one
does not have a partner. We study how the last point behaves
in the �C ,Hx� plane. In Fig. 12, we show behavior of dia-
bolical points of the model of S=3 in the �C ,Hx� plane. In
this case, there are three diabolical points in the region of
Hx�0. In Fig. 12�a�, we find the pair annihilates around C
�−0.003 9. There, the Hx value of the last point increases
when C decreases. However, when C decreases further, it
goes down and finally it merges to the C axis as shown in
Fig. 12�b� and merges with the partner coming from the Hx
�0 region. We call this point “the type III annihilation
point.” Interestingly in this case the diabolical points move
to a nonzero Hz region �C ,Hx�=0� ,Hy�=0� ,Hz��0�� but not
a nonzero Hy region �C ,Hx��0� ,Hy��0� ,Hz�=0�� as in the
other cases. We depict this behavior of diabolical points in
Fig. 13.

In this way, all the diabolical points disappear from
the �C ,Hx� plane when �C� becomes large and found three
types of annihilation points. By the above studies, we figured
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FIG. 11. Diabolical points between the lowest-energy level and
the first-excited energy level on the �Hx ,C ,Hy� space in the case of
E=0.3.
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FIG. 12. Behavior of diabolical points on the �Hx ,C� plane with E=0.3 for S=3 case: �a� around the last pair annihilates and �b� the last
one merges to the C axis �Hx=0�.
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FIG. 13. Diabolical points on �Hx ,C ,Hz� space with E=0.3. for
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out complete structure of diabolical points in the �C ,Hx�
plane.

B. Dependence on E at fixed C

So far, we studied the behavior in the �C ,Hx� plane. Here
let us study E dependence of the diabolical points. In Fig. 14,
we show diabolical points on the �Hx ,E� plane for a fixed
C�=−0.001�. In Fig. 14�a�, we show the case of S=2, where
the two diabolical points combine and annihilate when E
becomes small. This is a type I annihilation point. There,
they move to nonzero Hy region. In the case of S=3 cases,
the last one diabolical point moves to the origin �Hx ,E�
= �0,0� as depicted in Fig. 14�b�. This is a special case of the
type III annihilation point.

The same type behavior is found in larger spin cases �S
=4,5 , . . .� �not shown�. This observation indicates that the
ground state for E=0 is twofold degenerate in the odd spin
cases. This is a degeneracy not related to Kramer’s degen-
eracy because S is integer. We can easily understand this
degeneracy. For E=0, a Hamiltonian is described by

H = − DSz
2 + C�S+

4 + S−
4� . �23�

If we set C=0, �Mz=−S� and �Mz=S� give the twofold-
degenerate ground state, where Sz�Mz�=Mz�Mz�. For even
spin cases, matrix element between the states �Mz= �S� is
nonzero,

	Mz = S��S+
4 + S−

4�n�Mz = − S� � 0, �24�

because the difference of the magnetization Mz �=2S� is a
multiple of 4, where n is an arbitrary integer. On the other
hand and for odd spin cases, the difference 2S is not a mul-
tiple of 4. Thus,

	Mz = S��S+
4 + S−

4�n�Mz = − S� = 0. �25�

Therefore, quantum tunneling between the two states does
not occur, and the ground state is twofold degenerate in odd
spin models for E=0 and C�0 cases.

V. SUMMARY

We investigated nontrivial degeneracy of eigenenergies of
single molecular magnets using the large single-spin model.

In the parameter space �E ,C ,Hx ,Hy ,Hz�, positions of the
points at which the eigenenergies are degenerate �diabolical
points� are studied. As has been pointed out, the model �1�
has diabolical points at nonzero Hx. This fact seems non-
trivial and has been studied in terms of the Berry phase in the
path-integral formulation.36 We pointed out that the existence
of diabolical points at nonzero Hx is understood from a view-
point of the parity effect of the magnetization in the x direc-
tion.

We also studied effects of the higher-order anisotropy C.
For a small value of �C�, there are S diabolical points with
positive values of Hx. We studied behavior of those points
when �C� increases. They move out from the �C ,Hx� plane by
pair annihilations. We found three types of annihilations. In
the positive C case, each diabolical point moves to the C axis
and at the C axis it combines with the partner coming from
negative Hx region and they move to the nonzero Hy region.
In the negative C case, the diabolical points make a pair with
neighbors in the positive Hx region. We also found a pair
creation of diabolical points in the nonzero Hy region. We
should make emphasis that the annihilation points do not
coincide with the creation �bifurcation� points for finite val-
ues of S. This is in contrast to the case of S→�, which was
studied by Bruno.43 The asymptotic behavior in the limit S
→� was studied and we found that the distance between the
annihilation and the bifurcation points decreases to zero
when S increases. Thus, the argument of semiclassical pic-
ture is valid, but there exists an intrinsic quantum effect. In
the case of odd integer S, one diabolical point remains un-
paired and it moves to the C axis and makes pair with a
partner coming from negative Hx. In this case, we found that
they move to the nonzero Hz region.
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